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 A software project faces its top expense on defect removal; thereby delaying 

the schedules. There has been increasing demand for high quality software. 

Here, high quality software means, delivering defect free software and 

meeting the predictable results within time and cost constraints. Software 

defect prediction strives to improve software quality and testing efficiency. 

The research work presented here is an empirical study and analyzes 

importance of different metrics used in the organization. The paper examines 

the impact of LSL and USL, known as organization baselines, on various 

projects and proposes four metrics for capability analysis metrics. These can 

prove beneficial for categorizing the process of software development. These 

metrics aim to improve the ongoing software development process and are 

helpful in determining the quality of these processes in terms of their 

specification limits. Also, the paper aims to test if a sample of data came 

from a population with a specific distribution. This has the advantage of 

allowing a more sensitive test and the disadvantage that critical values must 

be calculated for each distribution. 
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1. INTRODUCTION  

There has been increasing demand for high quality software. Here, high quality software means, 

production and delivery of defect free software and meeting the predictable results within constraints of time 

and cost. A defect in a software product is observed as an imperfection and undesired behavior that prevent 

the product from maintain its normal behavior in terms of quality. There is a need for managing these defects 

that may occur in the product. When a defect is detected in the initial phases of the software development, it 

not only saves time, cost and resources to rework on that product but also prevents the migration of defects 

from one phase to another; thereby not letting additions in number of defects. Defect Detection and Defect 

Prevention are considered as the two most common approaches towards defect management. Defect 

Detection is the technique involved in detecting defects and its origin whereas Defect Prevention is defined 

as the technique for minimizing these defects and preventing them from reappearing in the product. A 

software project faces its top expense on defect removal; thereby delaying the schedules. An effective defect 

removal can lead to minimization of the development time and production of good quality software. As with 

increase in complexities of software added functionalities and hardware, changing business requirements and 

increasing competitive nature of business world, organizations are stressing on development of high quality 

software product requirements. It is advisable for the organizations to undergo defect detection in early stages 

of software development so as to gain confidence of the probable customers. 
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Process capability analysis (PCA) and Six Sigma methodology occupy crucial places in quality and 

process improvement initiatives. As a fundamental technique for quality and process  improvement efforts, 

PCA is  used to upgrade processes, products or services to maintain higher levels  of customer satisfaction. 

The research paper presented is based on a case study of software organization involved in testing 

and development of software projects. The study focus to analyze the use of metrics in projects (study is 

based on nine of such projects) developed and tested by the organization. Some commonly used metrics in 

development and testing of projects are Defect Density (DD), Cost of Quality (COQ) and Defect Removal 

Efficiency (DRE). The study proposes four metrics for improving the development process of these projects 

by analyzing the capability of ongoing software development processes. Further, the study uses Anderson–

Darling test which is a goodness-of-fit test that allows to control the hypothesis that the distribution of 

a random variable observed in a sample follows a certain theoretical distribution. In particular, it allows to 

test whether the empirical distribution obtained corresponds to a normal distribution. Section 2 discusses the 

various research works in this area in form of Literature Review. Section 3 discusses the objectives of the 

research paper. A brief about company profile is presented in Section 4. Section 5 deals with new proposed 

metric. Section 6 presents the results and discussions on findings. A conclusion and future scope is presented 

in Section 7. The limitation carried during the research is briefed in Section 8. 

 

 

2. LITERATURE REVIEW 

Software defect prediction strives to improve software quality and testing efficiency by constructing 

predictive classification models from code attributes to enable a timely identification of fault-prone modules 

[1]. A framework for comparative software defect prediction experiments was proposed and applied in a 

large-scale empirical comparison of 22 classifiers over 10 public domain data sets from the NASA Metrics 

Data repository. The result showed an appealing degree of predictive accuracy supporting the view that 

metric-based classification is useful.  It is said that finding and fixing a software problem after delivery is 

often 100 times more expensive than finding and fixing it during requirements and design phase [2]. It is also 

said that about 80% of the avoidable rework comes from 20% of defects. The paper [3] defines questions 

regarding defect detection techniques and presents a survey of empirical studies on testing and inspection 

techniques. 

The effort [4] is an analysis based on data obtained for five selected projects from leading software 

companies of varying software production competence. The purpose of the paper was to provide information 

on various methods and practices supporting defect detection and prevention leading to thriving software 

generation. On an average 13 % to 15% of inspection and 25% - 30% of testing out of whole project effort 

time is required for 99% - 99.75% of defect elimination. Advancement in fundamental engineering aspects of 

software development enables IT enterprises to develop a more cost effective and better quality product 

through aptly organized defect detection and prevention strategies. The work [5] analyzed data obtained for 

five different projects from progressive software company of varying software production capabilities. The 

defect prevention technique involved proactive, reactive and retrospective moves to uncover 70% of defects 

during inspections and developer unit testing. The validation testing uncovered about 29% of defects. 

Inspection becomes imperative in creating much more ideal software in factories through enhanced 

methodologies of aided and unaided inspection schemes. 

In many low mature organizations, defects are detected rather late in the development process. High 

rework and testing effort, typically under time pressure, lead to unpredictable delivery dates and uncertain 

product quality. The paper in [6] discussed the importance of life cycle modeling for defect detection and 

prevention and presented a set of concrete, proven methods that can be used to optimize defect detection and 

prevention. In particular, software inspections, static code analysis, defect measurement and defect causal 

analysis were discussed. Another paper [7] discussed the results to date of a series of e-Workshops on 

software defect reduction. The reformulated heuristics can be useful both to researchers and to practitioners.  

The quest for solutions to stay competitive in the marketplace brings software industries to take 

steps to control their products and processes by introducing metrics as part of their quality system and setting 

triggers for action when their capability limits are exceeded. Statistical method is proposed in [8] to control 

the software defect detection process together with further defect prevention analysis. The paper in [9] aims 

to improve effectiveness of inspection and testing approaches for achieving 99% defect-free product. It 

analyses defect patterns and gives concrete ranges for inspection and testing. It introduces 'depth of 

inspection (DI)' metric to indicate productivity and quality levels for software process. The approach 

presented emphasized that an optimal level of 10%-15% of inspection time and 15%-25% of testing time out 

of whole effort with DI value in the range of 0.4 to 0.7 at each phase of software development eliminates 

99% defects in small and medium scale industries. 
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Another paper [10] focused on finding the total number of defects that has occurred in the software 

development process for five similar projects and aimed at classifying various defects using first level of 

Orthogonal Defect Classification (ODC), finding root causes of the defects and uses the learning of the 

projects as preventive ideas. The paper also showcase on how the preventive ideas are implemented in a new 

set of projects resulting in the reduction of the number of similar defects. One study by Fang Chenbin [11] 

was introduction of a tool called Bug Tracing System (BTS) for defect tracing, has the advantage of 

popularity and low cost, and also improves the accuracy of tracking the identified defects. 

Stress [12] is given on how analysis of defects found in first iteration can provide feedback for 

defect prevention in later iterations, leading to quality and productivity improvement. One of the research 

papers [13] proposed and evaluated a general framework for software defect prediction that supports 

unbiased and comprehensive comparison between competing prediction systems. 

The objective of another study [14] was the identification of factors that influence defect injection 

and defect detection. They followed an extensive literature search to find influencing factors and processed 

the factors to achieve consistently formulated sets of factors without duplications, then used a cluster analysis 

to reduce the number influencing factors to manageable-sized sets for practical application and the last step 

involved final groupings of factors obtained by expert interpretation of the cluster analysis results. 

A paper[15] provided empirical evidence supporting the role of OO design complexity metrics ( a 

subset of the Chidamber and Kemerer suite), in determining software defects and found, even after 

controlling for the size of the software, these metrics are significantly associated with defects. It was 

discussed in [16] about the warnings found by FindBugs, a static analysis tool and  the kinds of warnings 

generated ,the classification of warnings into false positives, trivial bugs and serious bugs and provided 

insight into why static analysis tools often detect true but trivial bugs, and some information about defect 

warnings across the development lifetime of software release. 

An explanation for this ceiling effect was presented in [17]. They used three sub-sampling 

techniques (under-, over-, and micro-sampling), and looked for the lower useful bound on the number of 

training instances. They concluded that on having much evidence for the limited information hypothesis. 

Further progress in learning defect predictors may not come from better algorithms. 

In one of the papers [18], the initial concept of the Defect Based Process (DCA) Improvement 

approach is described. Its main contributions recorded were tailoring support for DCA based process 

improvement and addressing an identified opportunity for further investigation by integrating organizational 

learning mechanisms regarding cause-effect relations into the conduct of DCA. 

A controlled experiment comparing the defect detection efficiency of exploratory testing (ET) and 

test case based testing (TCT) is presented in [19]. It was observed that TCT produced significantly more false 

defect reports than ET and the results showed no benefit of using predesigned test cases in terms of defect 

detection efficiency, emphasizing the need for further studies of manual testing. Another work [20] presented 

a defect prediction model based on ensemble of classifiers.  They conducted a cost-benefit analysis for our 

ensemble, where it turns out that it is enough to inspect 32% of the code on the average, for detecting 76% of 

the defects. 

PCA (Process Capability Analysis) involves statistical techniques throughout the product cycle [21]. 

PCA has become widely adopted asthe measure of performance to evaluate the ability of a process to satisfy 

customer requirements in terms of specification limits [22]. 

 

 

3. OBJECTIVES OF STUDY 

The empirical research starts with comparative analysis of different projects handled by organization 

in terms of various defect detection and its removal using metrics. The work presented  highlights defect 

detection and removal methods adopted during software development process by comparing 9 different 

projects using metrics. Further, the research proposes four new metrics intended to judge the capability of the 

ongoing processes within this organization. Lastly, as the sample size is not large,so for the validity for 

carrying out statistical procedure is done theough Anderson-Darling GoF test. 

 

 

4. PROFILE OF ORGANIZATION ‘XYZ’ 

The case study presented here deals with development some of the software projects by a popular 

software organization „XYZ‟ in Noida (India). The organization is involved in the development and testing of 

software projects. The organization has been lucratively handling the development of projects within cost and 

schedule frame, producing more contented clients. 
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4.1.  LSL, USL, COQ 

The USL or Upper Specification Limit and LSL or Lower Specification Limit are limits set by the 

customers‟ requirements. This is the variation that customers‟ will accept from the process. The UCL or 

Upper Control Limit and LCL or Lower Control Limit are limits set by process based on the actual amount of 

variation of the process. The Figure 1 [23] represents the control chart representing this concept. 

 

 

 

Figure 1: USL/LSL and UCL/LCL 

 

 

The table 1 below defines the USL, LSL and Target, collectively refered as organizational baselines, 

for the 9 projects in terms of DD (Effort), DD (Size), COQ and DRE. 

 

 

Table1. Organization „XYZ‟ baseline 
BASELINES DD (Effort) DD (Size) CoQ DRE 

LSL 3.89 5.53   16.30 59.90 

USL 6.88       29.31 34.50 80.04 

TARGET 5.25     18.15 30.60 70.23 

 

 

Cost of Quality is a measurement used for assessing the waste or loss from a defined process.  These 

costs are noteworthy and need to be kept reduced or   avoided. Cost of quality measurement can track 

modification or upgradation over time for a particular process, or it can be viewed as a standard of excellence 

for comparison of two or more different processes. COQ can prioritize quality improvement actions.  COQ is 

shown as in Figure 2 [24]. 

COQ has two variations; Cost of poor quality and Cost of good quality. Cost of poor quality is an 

indication of cost of doing things wrong. Reality is that it is the cost of providing poor quality product or 

services which may include costs due to internal failure and costs due to external failure. Cost of good quality 

which includes prevention costs and appraisal costs is actually the cost of achieving good quality.  The 

equation 1 represents calculation for COQ. 

 

      ∑
(       )

                        (1) 

 

Where: E = External Failure Costs 

 I = Internal Failure Costs 

 A= Appraisal Costs 

 P = Prevention Costs 

 S = Sales 

Figure 2[24] depicts COQ. 
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Figure 2. Cost of Quality 

 

 

4.2.  Metrics Used in Organization ‘XYZ’ 

The table 2 presents some metrics followed by „XYZ‟ during the development of the different 

projects.  

 

 

                                                    Table 2. Metrics for „XYZ‟ 

                          MEAN 5.25            10.95 22.64 78%             15.31 
                                       (Average)  

                 

                  Standard Deviation   0.34            3.37            30.16                                        2.97 
                                   (σ) 

 

 

As from Table 2, total of 9 projects are been provided by the organization. These projects under 

study are referred as Work Package (WP). The WP have been tested and delivered to the clients. Out of 9 

projects, two of these projects (Project 5 and Project 7) do not have On Time Delivery (OTD) to the clients. 

This is interpreted as these projects failed to be delivered to the clients on the mentioned schedule or date. A 

summarized description of these metrics is discussed as below. 

DD (Size) is one of the metrics that is intended to calculate the ratio between the numbers of defects 

occurred during development of the software product to the size of the software developed. This metric is 

useful in telling how the software can be improved by reducing the coding defects. It is more difficult to 

correct defect in code at design time.It is given by equation 2 as: 

 

   (    )   
                                

         
                  (2) 

 

Another metric DD (Effort) widely used in the organization measures the ratio between the numbers 

of defect occurred during software development to the effort involved in the production of desired software. 

It is given by the equation 3 as: 

 

Cost of 
Good 

Quality 

Cost of 
Bad 

Quality 

Cost of 
Quality 

Appraisal 
Cost 

Prevention 
Cost 

Internal 
Failure 

Cost 

External 
Failure 

Cost 

WP 
Completed 

Project 
Name 

DD 
(Effort) DD (Size) DRE  

 
OTD 

 
     CoQ 

Yes Project 1 5.77 9.08 15.15 Yes 17.42   

Yes Project 2 5.03 12.48 16.19 Yes 15.11   
Yes Project 3 5.24 12.96 17.78 Yes 16.06   

Yes Project 4 5.51 15.85 11.91 Yes 12.53   

Yes Project 5 5.27 14.00 0.00 No 18.62   
Yes Project 6 5.33 11.56 17.78 Yes 16.94   

Yes Project 7 5.45 8.33 0.00 No 10.10   

Yes Project 8 5.13 9.52 100.00 Yes 12.60   
Yes Project 9 4.57 4.76 25.00 Yes 18.43   

       

 

Cost of Poor Quality 

Cost of Good Quality 
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    (      )   
                                

                              
                 (3) 

If the value of this metric is more, it can be interpreted that more effort is involved in resolving 

defects found in software development process. 

The various advantages of calculating DD is to compare relative number of defects in different 

components. Identifying defect prone components allows the concentration of limited resources into areas 

with the highest potential return on the investment. Another use for Defect Density is to compare subsequent 

releases of a product to track the impact of defect reduction and quality improvement activities. 

Defect Removal Effectiveness is a very important aspect of product quality.  A good defect removal 

process promotes the release of products with lower latent defects, generating high customer confidence. The 

scope of the defect removal efficiency measurement is by project and verification/validation life-cycle phase. 

The Defect Removal Efficiency (DRE) gives a measure of the development team ability to remove 

defects prior to release. It is calculated as a ratio of defects resolved/removed to total number of defects 

found. It is typically measured prior and at the moment of release of the product. This is represented by 

equation 4 as: 

 

      
                                           

                             
                 (4) 

 

Defect Removal Efficiency (DRE) is one of the commonly used metrics for measuring the 

efficiency of defect removal at various stages of the software development life cycle. By extrapolating the 

DRE metric to released products, an organization can measure the effectiveness of their quality assurance 

process based on the number of defects found in the product before and after its release. 

 

4.3.  Comparative Analysis of data  

The data collected from organization is analyzed using different comparative methods to find the 

relation among various metrics. Table 2 reports project data with the Defect Density (DD) recorded for all the 

nine projects in terms of effort and size of the projects.   

The Table 2 shows that Defect Density (Effort) is much lower for all of the nine projects in 

comparison to DD (Size). The gap between these two DD is observed to be recorded highest for Project 4; 

while Project 9 shows a relative less variation. The range of DD (Effort) varies in the limit of 4.57 to 5.77; 

while for DD (Size) is 4.76 to 15.85. 

 

 

5. PROPOSED METRICS IN PROCESS CAPABILITY ANALYSIS 

Process capability examines  the variability in process characteristics whether the process is capable 

of producing products which conforms to specifications  capability compares the output of an in-control 

process to the specification limits by using capability indices. The comparison is done by forming the ratio of 

the area spread between the process specifications to the spread of the process values, as measured by six 

process standard deviation units.  

The research proposes a metric Process Capability (Cp) index is used to compare the given sample 

to its specification limits by using capability indices.  A process capability index works with both the process 

variability and the process specifications to determine whether the process is "capable". It is the numerical 

summary that compares the behavior of product or process characteristics to specifications. It is given in 

equation 5.  

 

      
(                )

  
 
         ( )

  
 

(       )

                     
                                (5) 

 

It can be said that Cp can determine how well a process is able to meet specifications. The higher 

the value of the index, the more capable is the process. The process is centered at the midpoint of the 

specification limits if Cp=Cpk. The process if off-centered and can be accepted as lower capability than the 

case that the process is centered if Cpk<Cp. The reason is that it is not operating at the midpoint of the 

interval between the specification limits. If Cpk=0, the process mean is exactly equal to one of the 

specification limits.  If Cpk<0, the process mean lies outside the specification limits, that is for μ>USL or 

μ<LSL, Cpk<0. If Cpk<-1, the entire process lies outside the specification limits. It should be noted that 

some authors define Cpk to be non-negative so that values less than zero are defined as zero [21]. 

1<Cpk<1.33 means that the process is barely capable. If Cp>1.50, it shows the variables are critical. 

Automotive industry uses Cpk=1.33 as a benchmark in accessing the capability of a process [25]. The data 

collected from the past projects of organization XYZ is presented below in Table 3. 
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Table 3. Cp metrics 

 

 

Another metric proposed is Process Performance Index (PPI). The capability index considers only 

the spread of the characteristic in relation to specification limits assumes two-sided specification limits. The 

product can be unworthy if the mean is not set appropriately. The Process Performance Index takes account 

of the mean () and is defined as in equation 8: 

 

Cpk = min [(USL -  )/3, ( - LSL)/3]                  (8) 

 

The process performance index can also accommodate one sided specification limits. For upper 

specification limit, it is given by equation 9. 

 

Cpk = (USL - )/3                     (9) 

 

For lower specification limit, it is given by equation 10.  

 

Cpk = ( - LSL)/ 3                   (10) 

 

 

The research further proposes two more metrics for further validation of ongoing software 

processes; CPU and Cpl. CPU measures the capability of the upper half of the process; Cpl measures the 

capability of the lower half of the process. The CPU metric is given by equation 11. 

 

      
(        )

                      
                 (11) 

 

The Cpl metric is given by equation 12. 

 

     
(        )

                      
                 (12) 

 

Cpk, CPU, and CPL indicate the ideal performance of your process if special causes were 

eliminated. If these potential indices are compared to benchmarks in the field, it can be helpful to determine 

whether to improve the process or not.  

Next, the research drives towards fitting of the data using Anderson Darling (AD) Goodness of Fit 

(GoF) test.  

In most of the statistical methods, it is assumed that there exists an underlying distribution in the 

derivation of results. But, there are chances of risks if our data follow a specific distribution. If the 

assumptions are made wrong, then results obtained may be invalid and of no use. 

According to [26, 27, 28], there are two main approaches for checking distribution assumptions. One is 

empirical based approach, which is easy to understand and implement. These are intuitive based graphical 

properties. Another approach is GoF (Goodness of Fit) test. These tests are more formal, statistical 

procedures for assessing underlying distribution of data. The results are more quantifiable and reliable than 

those of empirical based approach. Anderson-Darling (A-D) and Kolmogorov-Smirnov (K-S) tests are two 

Organization Baselines 

  
DD 

(Effort) 

 

Cp 
Metric 

for DD 

(Effort) 

 
DD 

(Size) 

Cp 
Metric 
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(Size) 

 
    COQ 

Cp 
Metric 

for 

COQ 

 
DRE 

Cp  
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for  

DRE 

 

LSL 

 
USL 

 

TARGET 
 

  

3.89 

 
6.88   

       

5.25 

1.48 

 

 
 

 

5.53   

        
29.31 

 1.17          

 

16.30   

                    
34.50 

 

                     

    
     

    1.02 

 

59.90 

 
80.04 

 

 

 
 

 0.11 

 18.15 
 

 

 
 

 
30.60 

 

 

 
 

 
 

      0 

 
      0 

 

   2.15 

70.23  
 

0 

 
0 

 

    0.63 

PROCESS 

PERFORMANCE  
INDEX METRICS 

Cpk 

 
Cpl 

 

CPU 

                        0.154 
 

0.154 

 
1.59 

1.81 
 

6.08 

 
1.81 
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most commonly used tests. The correct implementations of statistical procedures require establishing 

underlying distribution of data-set. Firstly, it requires whether normal applies before we can implement 

statistical procedures. 

In GoF, two distribution elements are basically considered; Cumulative Distribution Function (cdf) 

and Probability Distribution Function (pdf). AD and KS uses cdf and belongs to class of “distance tests”. AD 

test is selected because of two features. Firstly, it is one of the best distance tests that can be applied to both 

small samples and large samples of data. Also, various statistical packages are available for applying AD and 

KS tests. 

To implement distance tests, firstly it is assumed that there is normal (pre-specified) distribution. 

Next, distribution parameters; mean and variance are estimated from the data. This process builds distribution 

hypothesis, known as null hypothesis (H0). Then the assumed or hypothesized distribution is tested using data 

set. Finally, H0 is rejected, if any of the elements composing H0 is not supported by data. 

The A-D test has the form as in equation –  

 

    0 0 ( 1 )

1

1 2
AD = ln( ) ln(1 )} ;....              (13)

n

i n i

i

i
F z F z n

n
 




  

 

Where F0 is assumed distribution with sample estimated parameters (µ,σ); 

Zi is the standardized sorted ith sample value 

n is the sample size 

ln is the natural logarithm taking values from 1 to n. 

At significance level of α =0.05, the null hypothesis is rejected if AD statistic is greater than the AD*. This is 

given by equation 14 

 

2

0.75 2.25
AD* = AD * (1+( ) + ( ))                               (14)

n n

  

The steps followed in the AD GoF test for Normality is summarized as: 

 

                                                           (15)
x

Z



 

  
 

 

1. Sort original X sample and standardized  

2. Establish the null hypothesis 

3. Obtain the distribution parameters µ,σ 

4. Obtain the F(Z) cumulative probability 

5. Obtain logarithm of the above. 

6. Sort cumulative probability in descending order 

7. Find values of 1- F(Z) 

8. Find logarithm of the result of above step 

9. Evaluate test statistics i.e. AD and AD* 

10. Reject null hypothesis if AD* < AD 

The research next tests AD GoF test for sample of Defect Density (Effort) by following the above 

steps. Table 4 shows the descriptive statistic for DD(Effort). 

 

 

Table 4. Descriptive Statistic of Probable Defect Density (Effort) Data for AD GoF test 

 

 

 

 

For the smallest element, we have the normal probability of smallest variable within estimated µ and σ as in 

equation 16: 

 

4.57
5

( )
0.25, 0. 4 03

4.57-5.25
( )=F (Z)=F (-2)=0.022                     Norm                  a

0
l 

.34
µP                (16)  

In this case, AD value obtained is 0.253, whereas AD* calculated from equation 14 is 0.677. Table 5 

shows intermediate values for AD GoF test for Normality. 

 

Variable N Mean (µ) Median(σ) 

Data Set 9 5.25 5.27 
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Table 5. Intermediate values for AD GoF test for Normality with Defect Density (Effort) Dataset 
DD (Effort) i Sorted F(Xi) 1-F(Xi) 1-F(Xn-i+1) 

5.77 1 4.57 0.021033 0.978967 0.06357028 

5.03 2 5.03 0.2518 0.7482 0.22527429 

5.24 3 5.13 0.354832 0.645168 0.2821104 
5.51 4 5.24 0.481605 0.518395 0.41264388 

5.27 5 5.27 0.517082 0.482918 0.48291776 

5.33 6 5.33 0.587356 0.412644 0.51839536 
5.45 7 5.45 0.71789 0.28211 0.64516832 

5.13 8 5.51 0.774726 0.225274 0.74820025 

4.57 9 5.77 0.93643 0.06357 0.97896712 

 

 

Similarly, for Defect Density Table 6 and 7 shows the AD statistic and intermediate values   for AD 

GoF test for Normality with Defect Density (Size) Dataset. 

   

 

Table 6. Descriptive Statistic of Probable Defect Density (Size) Data for AD GoF test 

 

 

 

 

Table 7. Intermediate values for AD GoF test for Normality with Defect Density (Size) Dataset 
DD (Size) i Sorted F(Xi) 1-F(Xi) 1-F(Xn-i+1) 

9.08 1 4.76 0.033094 0.966906 0.072852 
12.48 2 8.33 0.21846 0.78154 0.182545 

12.96 3 9.08 0.289525 0.710475 0.275257 

15.85 4 9.52 0.335725 0.664275 0.324733 
14 5 11.56 0.571975 0.428025 0.428025 

11.56 6 12.48 0.675267 0.324733 0.664275 

8.33 7 12.96 0.724743 0.275257 0.710475 
9.52 8 14 0.817455 0.182545 0.78154 

4.76 9 15.85 0.927148 0.072852 0.966906 

 

 

AD value obtained is 0.172 and AD* is 0.191. Table 8 and 10 shows statistic data for DRE and 

COQ and similar test is conducted for DRE and COQ and the results are given as in Table 9 and 11.  

 

 

Table 8. Descriptive Statistic of Probable DRE Data for AD GoF test 

 

 

 

 

Table 9. Intermediate values for AD GoF test for Normality with DRE Dataset 
DD (Size) i Sorted F(Xi) 1-F(Xi) 1-F(Xn-i+1) 

15.152 1 0 0.226356 0.773644 0.005157 

16.19 2 0 0.226356 0.773644 0.468875 

17.778 3 11.905 0.360871 0.639129 0.564104 
11.905 4 15.152 0.401889 0.598111 0.564104 

0 5 16.19 0.415258 0.584742 0.584742 

17.778 6 17.778 0.435896 0.564104 0.598111 
0 7 17.778 0.435896 0.564104 0.639129 

100 8 25 0.531125 0.468875 0.773644 

25 9 100 0.994843 0.005157 0.773644 

 

 

Table 10. Descriptive Statistic of Probable COQ Data for AD GoF test 

 

 

 

 

 

Variable N Mean (µ) Median(σ) 

Data Set 9 10.95 11.56 

Variable N Mean (µ) Median(σ) 

Data Set 9 15.31 16.05 

Variable N Mean (µ) Median(σ) 

Data Set 9 22.64 16.19 
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Table 11: Intermediate values for AD GoF test for Normality with COQ Dataset 
DD (Size) i Sorted F(Xi) 1-F(Xi) 1-F(Xn-i+1) 

17.423 1 10.1 0.039678 0.960322 0.132677 
15.113 2 12.533 0.174751 0.825249 0.147042 

16.055 3 12.599 0.180531 0.819469 0.238766 

12.533 4 15.113 0.47321 0.52679 0.29206 
18.622 5 16.055 0.598648 0.401352 0.401352 

16.939 6 16.939 0.70794 0.29206 0.52679 

10.1 7 17.423 0.761234 0.238766 0.819469 
12.599 8 18.43 0.852958 0.147042 0.825249 

18.43 9 18.622 0.867323 0.132677 0.960322 

 

 

The AD and AD* for DRE are 1.418 and 1.576; and for COQ, it is 0.333 and 0.370 respectively. 

The normal probability curve for the above results is shown below as in Figure 3- 6. 

 

 

 
 

              Figure 3. Normal Probability Plot for AD GoF test for DD (Effort) 

 

 

                
 

              Figure 4. Normal Probability Plot for AD GoF test for DD (Size) 

 

 

               
 

            Figure 5. Normal Probability Plot for AD GoF test for DRE 
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        Figure 6: Normal Probability Plot for AD GoF test for COQ 

 

 

6. RESULTS AND ANALYSIS  

Results from Table 5 shows that for DD (Effort), Cp metric has a value of 1.48, which can be 

interpreted to be satisfactory for existing process. The value of Cp metric for DD (Size) is 1.17 interpreted to 

be adequate process. The Cp metric values for COQ and DRE are obtained as 1.02 and 0.11, which is 

interpreted as adequate and unsatisfactorily process respectively. The result of Cp metric for DRE process 

can be improved by first reducing the variation in the process and then shifting the mean of the process 

towards the target. 

In the case of GoF test for DD (Effort), AD yields a value 0.253, which is less than AD* value of 

0.677. The p-value observed is 0.641. Therefore, AD GoF test doesnot reject the null hypothesis that these 

samples have been drawn from a Normal (5.25, 0.34) population and we can assume normality of data. For 

DD (Size), the AD statistics obtained is 0.172 and AD* is 0.19. Here also, AD<AD* and observed p-value is 

0.897, meaning null hypothesis is accepted. AD statistics in the case of DRE is is 1.418 and AD* is 1.576, 

whereas p-value is 0. This condition rejects the null hypothesis as p-value is less than 0.05. For GoF test on 

COQ, the value of AD is 0.333 and AD* is 0.370. The p-value is 0.425, which is more than acceptable value 

of 0.05. 

 

 

7. CONCLUSION  
The proposed metrics can be beneficial in determining the effectiveness of software development 

process. When the capability index of the process is known, the areas that need to improve can be focused. 

This will be aiding in the process of defect detection and removal; thereby advancing the removal efficiency 

and quality of the software to be produced. This will further add to more satisfied customers. 

The AD GoF Normality test is performed to determine the underlying distribution of data. Various 

parameters are estimated and checked to know about correct implementation of statistical procedures. 

 

 

8. LIMITATION OF STUDY AND FUTURE SCOPE 

The study is limited to only 9 projects provided by the organization due to confidential issues. The 

study becomes confined due to limitation of data provided.  Also, the study is restricted to only one software 

organization, so a comparative analysis is not possible to know about the trends in defect detection and 

removal. 

The future scope of this research lies in the study of defect detection and removal during various 

phases of software development. Also, it will enrich by proposing new metrics that will be used for easy 

detection of the defects that prevails in the software during development in its lifecycle. 
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